

Immunosuppression Meds in Solid Organ Transplant

R. Erik Edens MD, PhD

R. Erik Edens

• I have nothing to disclose

Objectives

- Recognize medications commonly used in solid organ transplant
- Recognize common side effects of immunosuppression medications used in solid organ transplant
- Recognize disease states that occur more frequently in transplant recipients
- Understand the mechanisms for how immunosuppression medications increase risk of other chronic disease

Discussion outline

- Commonly used medications
 - "Induction" medications
 - Maintenance meds
 - Acute rejection therapies
- For each med:
 - History & development
 - Mechanism of action
 - Common med side effects
- Diseases & conditions associated with immunosuppression

Immunosuppression Med History J George in Heart Transplantation, Ed. Kirklin et al, Churchill Livingstone, 2002

TABLE 13-1	Evolution of Immunosuppression in Organ Transplantation
YEAR	APPROACHES
1959	Total body irradiation
1960-1962	6-Mercaptopurine and azathioprine
1960-1965	Additional myelotoxic agents
1962-1963	Steroids used systematically
1966	Lymphocytotoxic sera/antibodies
1978	Cyclosporine
1989	Tacrolimus
1997	Mycophenolate mofetil
1998	Sirolimus

"Induction Therapy"

At time of transplant surgery

Three types of "Induction Therapy"

- 1. Triple Immunosuppression: Steroids, Tacro/Cyclo, CellCept/Imuran
- 2. Cytolytic + Triple Immunosuppression
- 3. IL-2 rector Blocker + Triple Immunosuppression

Other strategy: Just start "Maintenance Therapy" at time of transplant

• Start with higher doses of Maint meds, then wean to lower after few months

"Induction Therapy"

- Also known as "Cytolytic therapy"
- <u>Thymoglobulin</u> most commonly used now: Rabbit anti-human thymocyte antibodies
 - Depletes all lymphocytes (B & T cells, all classes)
 - Name "Induction Therapy" because thought would deplete immune system like in Bone Marrow Transplant
 - Doesn't actually "induce" like BM, does incr risk of PTLD & infection
 - Many clinical studies show no benefit
 - Does allow less rejection early out so can minimize other meds
 - Very useful for acute compromising rejection
 - <u>ATGAM</u>: Horse anti-human thymocyte antibodies
 - OKT3: mouse anti-human CD3 receptor on T-cells

"Induction Therapy" continued

- Anti-IL-2 receptor antibodies
- 1. <u>Basiliximab</u> (Simulect): mouse anti-human IL-2 receptor blocker
- 2. <u>Daclizumab</u>: Withdrawn from market in 2018
 - Reports of auto-immune encephalitis

Maintenance Immunosuppression: Traditional Triple Agent Approach

- Steroids: Methylprednisilone, prednisone Broad based, non-selective Inhibit cytokines, WBC function, inflam mediators
- Calcineurin inhibitors:
 - Cyclosporine & Tacrolimus
 - Inhibit T-cell translation of cytokines (IL-2)
- •Antimetabolites (inhibit WBC proliferation): Imuran: inhibs purine synthesis (intercalates into DNA) CellCept: blocks *de novo* purine synthesis
- Adjunct Meds: Sirolimus & Everolimus
 - Used for antibody mediated rejection as knocks out B-cells also
 - Used to minimize or avoid calcineurin inhibitors (protect kidneys)
 - Anti-proliferative meds for coronary vasculopathy in heart

Specific Immunosuppressives: Most Commonly Used Agents

- Steroids
- Azathioprine
- Mycophenolate Mofetil
- Cyclosporine
- Tacrolimus
- Sirolimus
- Everolimus

PHealth

Steroids: Background

- Methylprednisilone, Prednisilone, Prednisone
- Oldest immunosuppressive—
 - Used in skin grafts in animals 1951
 - Used clinically 1960
 - Widespread in transplant since 1962

Steroids: Mechanisms

- 1. Anti-inflammatory
 - Inhibit inflammatory mediators
 - Leukotrienes & prostaglandins
 - Induce release of lipocortin which inhibits phosphodiesterase A2

Steroids: Mechanisms

2. Immunosuppressive

- Complex since a "hormonal med"
- "Principal effect": impairs T-cell transcription of various cytokines
 - IL-1, IL-2, IL-3, IL-6, TNF-alpha, IFN-gamma)
- Suppress macrophage function
- Reduction of adhesion molecules
- Inhibition of leukocyte migration
- Induction of lymphocyte apoptosis
- Reduction of HLA expression

Steroids: Pharmacokinetics

- T_{1/2} = 3 hrs
- Metabolized in liver
 - Liver disease can prolong $T_{1/2}$
 - Drugs that induce hepatic enzymes
 - May shorten $T_{1/2}$
 - Phenytoin, barbiturates, rifampin
- Titration of dose somewhat arbitrary
 - No levels to monitor, titrate to effect

Steroids: Toxicities

- Hypertension
- Lipid abnormalities
- Diabetes
- Osteoporosis
- Bone/joint pain
- Obesity
- Cushingoid changes
- Cataracts

- GI ulcerations
- Poor wound healing
- Sleep disturbances
- Personality changes
- Pancreatitis

Steroids: Uses

- Commonly used immediately after tpx
 - Often first dose in OR
 - High doses used post transplant
 - Weaned over months-years
- Some programs use chronically
- Commonly used to treat acute rejection
 - May have a noticeable effect within hours
 - IV solumedrol penetrates organ tissue quickly

Azathioprine (AZA) = Imuran

- First synthesized in 1961
 - Discovered immunosuppressive activity
- First used clinically in 1961
- Mainly as part of 2 or 3 drug regimen
 - Titrated to keep WBC low (3-7K)

Azathioprine: Mechanism

- A thiopurine that interferes with DNA and RNA synthesis
 - Inhibits both T and B-cell proliferation
 - Inhibits IL-2 production by a different mechanism than calcineurin inhibition
 - Can result in chromosome breakage
 - May predispose to malignancy
 - In adult heart, 4x increase in malignancy

Immunosuppressive Activity

Azathioprine: Toxicities

- Myelosuppression
 - Dose dependent
 - Delayed onset
 - WBC > platelets
 - Anemia common
- Hepatotoxicity
 - Mainly ↑ transaminases

- Pancreatitis
- Alopecia
- Malignancies*
- Diarrhea

Mycophenolate Mofetil (MMF) = Cell Cept

- Isolated from bacteria in 1898
- Original use was in psoriasis
- Found to inhibit guanine synthesis
- Syntex Corp developed as a drug as a lymphocyte inhibitor (1990)
 - First clinical trial 1992
- Mainly as part of 2 or 3 drug regimen
 - Titrated to keep WBC low (3-7K)

Mycophenolate Mofetil: Mechanism

- Reversible, non-competitive inhibitor of inosine monophophate dehydrogenase, which is critical to guanine synthesis
- Lymphocytes one of the few cells sensitive to this med

Immunosuppressive Activity

Mycophenolate Mofetil: Toxicities

- Mainly GI
 - Diarrhea
 - Nausea
 - Vomiting
 - Gastritis

- Urinary urgency
- Dysuria
- Cholestasis
- Leukopenia*

Figure 6: Liver transplant immunosuppression prior to discharge: azathioprine vs. mycophenolate mofetil, 1993–2001. Source: *2002 OPTN/SRTR Annual Report*, Table 9.6.

PHealth

Cyclosporine: Background

- 1950s Sandoz Labs decided to check fungal isolates for other activities besides antimicrobial
 - Found one fraction inhibited tumor cell line
- Investigated effects on immune system
 - 1972, Barel et al noted immunosuppressive activity
 - Late 1970s—used in animals
- First used clinically in 1979—saved the transplant world, allowed transplant
- Mainly used as a chronic maintenance med

PHealth

Cyclosporine: Mechanisms

- 1. Blocks T-cell cycle at G₀-G₁ phase
- 2. Limits T-cell activation
 - Does not impair killing effect if activated
- 3. Inhibits IL-2 receptor formation
- 4. Impairs responsiveness to IL-1
 - IL-1 promotes IL-2 production
 - So Cyclo thereby inhibits IL-2 production

Immunosuppressive Activity

Cyclosporine: Mechanisms

- Mainly affects cytotoxic T-cells & T-helpers
- Little to no effect on suppressor T-cells
- No direct effect on B-cells
 - Does inhibit primary B-cell responses that are T-cell dependent (humoral responses)
- No effect on granulocytes or macrophages

Cyclosporine: Pharmacokinetics

- Highly lipophilic, absorbed in upper GI
 - Fatty meals delay aborption of standard prep but not microemulsion (Neoral)
 - Fatty meal may \uparrow absorption in some px
- Peak level 3-4 hrs
- Bioavailability varies widely between px

Cyclosporine: Toxicities--Renal

- Often with initial dose
- Renal artery constriction
- Oliguria possible
- 1 BUN/Cr
- Stimulates renin synthesis and release
- Unclear if 1 angiotensin II causes problems or is caused by arteriole constriction
- Subacute-- \downarrow GFR
- Chronic-glomerular sclerosis & fibrosis
- Risks: underlying renal disease, chronic high CSA levels

Cyclosporine Renal Effects J George in Heart Transplantation, Ed. Kirklin et al, Churchill Livingstone, 2002

Control versus 50 mg/kg cyclo in rats

Cyclosporine: Toxicities

- Hypertension:
 - 60-80%
 - Arterial constriction?
 - Renin-angiotensin?
- Hepatotoxicity
 - Idiosyncratic
- 1 Gall stones
- Hyperkalemia
- Acidosis

- Hypomagnesemia
- Hyperuricemia
- Neurologic
 - Tremor
 - Parathesias
 - HA
- Excess hair growth*
- Gingival hyperplasia*
- Hyperlipidemia

Cyclosporine: Drug Interactions

\downarrow Levels (\uparrow c P-450)

- Rifampin
- Isoniazid
- Phenobarbital
- Phenytoin
- Carbamazepine

 \uparrow Levels (use c P-450) E-mycin Keto/Itraconazole Diltiazem Verapamil Cimetidine Methylprednisilone Metaclopramide

PHealth

Tacrolimus: Background

Health

- First isolated from bacteria 1984
- First clinical use 1989
 - Liver rejection rescue
- Mainly used as a chronic maintenance med

Tacrolimus: Mechanisms

- Prodrug—like cyclosporine
 - Binds to FK binding protein, then inhibits calcineurin
- 100x more potent than cyclo on wt basis
- Blocks cytokine expression—like cyclo

Immunosuppressive Activity

Tacrolimus: Pharmacokinetics

- Highly lipophilic
- BA variable with oral administration
 - (Our program doses as npo 1 hr before and after)
- Absorbed through small bowel
- Peak 2-3 hrs
- Metabolized:
 - Small bowel and liver
 - Cyto P-450
- Excreted in bile and by kidneys

Tacrolimus: Toxicities

- <u>Renal</u>: similar to cyclo, less severe
 - Dose related, unclear mechanism
 - Induces less renovascular resistance
 - Chronic lesions of similar type as with cyclo
 - Kidney effects more pronounced when dehydrated
- <u>Neuro</u>:
 - Mainly tremor, also HA, insomnia, seizure (especially when with steroids)

Tacrolimus: Toxicities

- Hypomagnesemia (common)
- Hyperkalemia (ocass)
- Hyperuricemia (ocass)
- Glucose intolerance
 - Rarely insulin dependent
 - Mainly with steroids

- Hypertension (less than cyclo)
- Hypercholesterolemia (ocass.)
- Drug interactions
 - Similar to cyclo*
 - Cyto P-450

Figure 5: Liver transplant immunosuppression prior to discharge: cyclosporine vs. tacrolimus, 1993–2001. Source: *2002 OPTN/ SRTR Annual Report*, Table 9.6.

PHealth

Figure 7: Incidence of rejection at 1 year in liver transplant recipients, 1992–2000. Source: 2002 OPTN/SRTR Annual Report, Table 9.6.

PHealth

Figure 4: Incidence of rejection at 1 year in kidney, pancreas, and kidney–pancreas transplant recipients, 1992–2000. Source: 2002 OPTN/SRTR Annual Report, Tables 5.6, 6.6, 7.6, 8.6.

Sirolimus (Rapamycin)

- Naturally occurring in *streptomyces*
- Isolated 1970s
- Approved 1999 for organ rejection prophylaxis in renal tpx
- A macrolide antibiotic, similar in structure to tacro

Everolimus: Mechanisms

- These are "Proliferation signal inhibitors"
- Inhibits cellular proliferation
 - Interferes with growth factor-driven transduction signaling
- Does NOT inhibit IL-2 production
 - Likely why these are not as good at anti-cellular rejection as Tacro

Sirolimus: Pharmacokinetics

- Peak = 1-3 hrs
- T_{1/2} = 60 hrs
- Once daily dosing, steady state 7-14 days
- 90% excretion via feces

Sirolimus: Toxicities

- No significant renal toxicity
- Dyslipidemia: high cholesterol and TG common
- Mouth ulcers and rashes biggest limiting side effect
- Anemia common
- Thrombocytopenia > leukopenia
- Proteinuria
- Weight loss
- Testicular atrophy
- Growth retardation (in animals)

Immunosuppressive Activity

Everolimus:

- Similar mechanism to sirolimus
- Similar long half life and daily dosing
- Also follow drug levels
- Everolimus less side effects than sirolimus
 - Especially mouth ulcers and rashes

Cellular Rejection

- 1. IV steroids—Solumedrol typically
- 2. Cytolytic therapy
 - Knocks out all leukocytes
 - Thymoglobulin: Rabbit polyclonal, mult CDs
 - ATGAM: equine polyclonal to multiple CDs
 - Knocks out all T-cells
 - OKT3: murine monoclonal anti-CD3 antibody
- 3. Review compliance
- 4. Increase maint med doses/levels if have been compliant
- 5. Monitor more closely

Antibody Rejection

- 1. Plasmapharesis: controversial as not much removed
- 2. Rituximab—anti-CD20 antibody so knocks out circulating B-cells
 - IV infusion
 - Lytic syndrome early risk
 - Low IgG longer term risk
- 3. IVIg infusions
- 4. Add mTOR (sirolimus or everolimus)
- 5. Bortezomib- proteasome inhibitor
 - Potent, lots of side effects, high death rate from infection

Lab abnormalities you may see

- Low magnesium—tacro & cyclo
- Slightly high potassium—tacro & cyclo
- Low WBC—Cellcept & Imuran
- Low lymphocyte count—tacro & cyclo
- Anemia—Cyclo, Everolimus, Sirolimus
- High uric acid—tacro & cyclo
- Rising BUN/Cr—tacro & cyclo

PHealth

Immunosuppression related conditions

1. Infection risk

- Viruses: chronic EBV & CMV viremia possible
- Fungus: foot, groin, hair
- Bacteria: otitis and sinusitis
- 2. Post Transplant Lymphoproliferative Disorder (PTLD)
 - Often EBV associated
 - Presents like lymphoma: nodes, swollen turbinates in nose, big tonsils
 - Mild \rightarrow decrease immunosuppression
 - Moderate \rightarrow Rituximab or mild chemo
 - Severe \rightarrow Can be life threatening and need full chemo
 - Chronic severe: rarely, chemo doesn't work very well

Immunosuppression related conditions

- 1. Eczema very common, esp on tacro—Rx standard. Encourage emollients
- 2. Warts: hands, feet especially; treatment is standard
- 3. Auto-immune hematologic issues
 - Most common is attacking platelets
 - Many of these are self limited
 - Next most common is attacking RBC
 - Attacking WBC is rare and deadly
- 4. Auto-immune disorders
 - All auto-immune disorders at increased risk
 - Lupus most common one triggered
- 5. Increased risk of cancers: especially skin cancer
 - Peds- most common is lymphoma
 - Adults skin cancer is most common

General Clinic findings

- Diarrhea—CellCept> Imuran
- Headaches- Cyclo >> tacro
- Nasal congestion- if PTLD or just chronic sinus
- Frequent infections
 - Easier to get viruses, get sicker, stay sicker longer
 - Don't usually need admission for common viruses
- Frequent sinusitis can happen > general public
- If chronic steroids—lots of infection risks and health problems
- Most program recommend no live virus vaccines: MMR, varicella

References

- Pilch NA, Bowman LJ, Taber DJ. Immunosuppression trends in solid organ transplantation: The future of individualization, monitoring, and management. Pharmacotherapy. 2021 Jan;41(1):119-131. doi: 10.1002/phar.2481. Epub 2020 Dec 30. PMID: 33131123; PMCID: PMC8778961.
- <u>Immunosuppressant Drugs and Their Effects on Children Undergoing Solid Organ Transplant</u> JA Spinner, SW Denfield Pediatrics in Review, 2022 publications.aap.org
- Jasiak NM, Park JM. Immunosuppression in Solid-Organ Transplantation: Essentials and Practical Tips. Crit Care Nurs Q. 2016 Jul-Sep;39(3):227-40. doi: 10.1097/CNQ.0000000000000117. PMID: 27254639.
- Parlakpinar H, Gunata M. Transplantation and immunosuppression: a review of novel transplantrelated immunosuppressant drugs. Immunopharmacol Immunotoxicol. 2021 Dec;43(6):651-665. doi: 10.1080/08923973.2021.1966033. Epub 2021 Aug 20. PMID: 34415233.

Questions?

Contact Information: r.edens@ouhealth.com

