

Artificial Intelligence (AI): Impact on Safe and Effective Prescribing Practices Diana Webber, DNP, APRN-CNP

Relevant Financial Disclosure(s)

Diana Webber, DNP, APRN-CNP

• I have nothing to disclose.

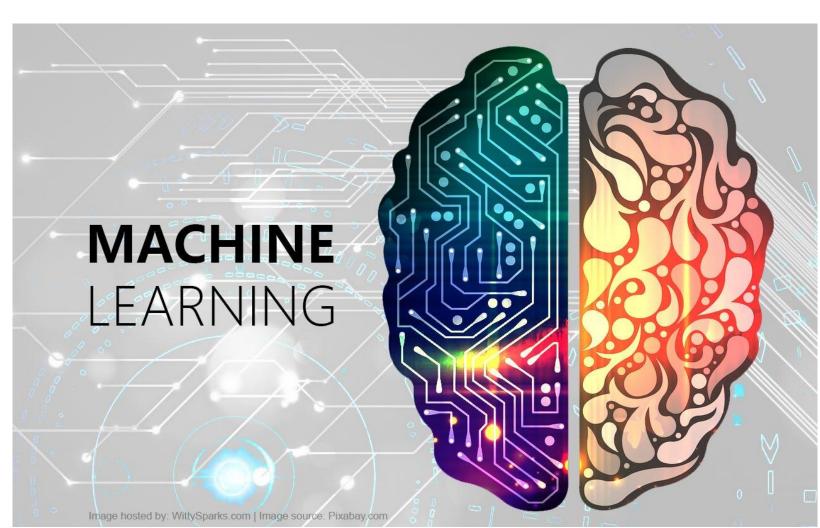
Objectives

• The Objectives of this presentation are as follows:

- To provide a general overview of machine intelligence, commonly known as artificial intelligence or AI, and its application to healthcare and the pharmaceutical industry
- To trace the path of several current AI-developed drugs through the pipeline of new drug discovery and development toward FDA approval
- To explore the risks, benefits, and ethical concerns relevant to pharmacology and AI
- To identify gaps in Advanced Practice Provider pharmacology education regarding AI

PHealth

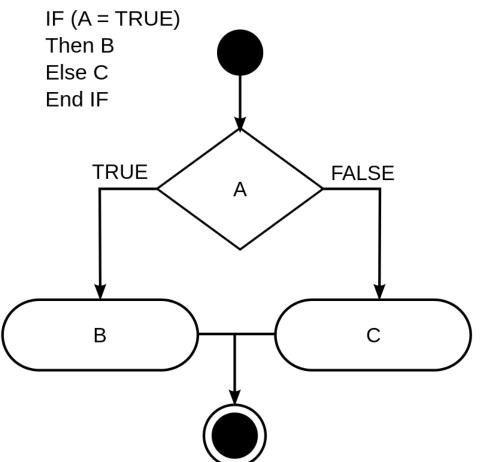
4


What is Artificial Intelligence (AI)?

Programming computer systems to perform tasks normally requiring human cognition:

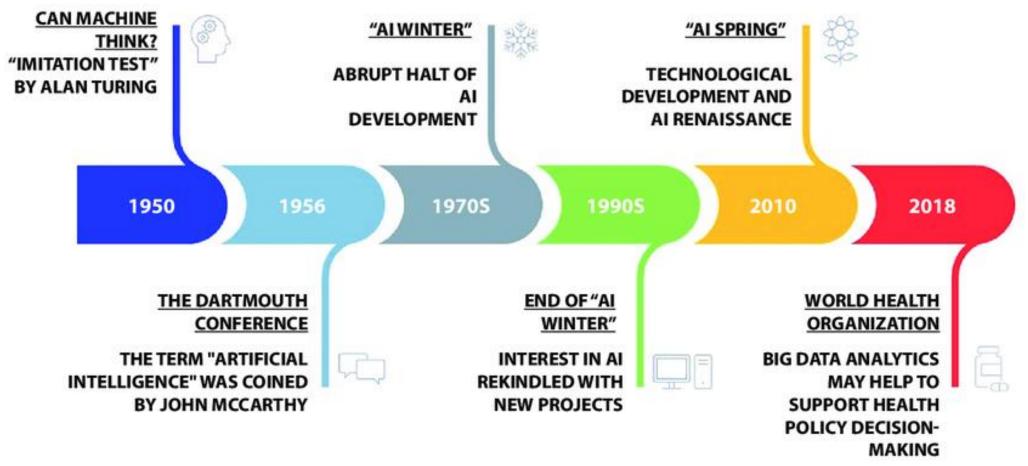
- Perception
- Language understanding
- Reasoning
- Learning
- Planning

Health


• Problem-solving

History of Al

- Alan Turing: 1950 publication posed the question: "Can machines think?"
 - The "Imitation Game" or "Turing Test"
- John McCarthy: 1956, 2004 definition "The science of making intelligent computer programs."
- Subfields of AI:
 - Natural language processing (NLP)
 - Machine learning (ML)
 - Deep learning (DL)
 - Computer vision (CV)



Timeline AI Development

TIMELINE DIAGRAM OF ARTIFICIAL INTELLIGENCE HISTORY

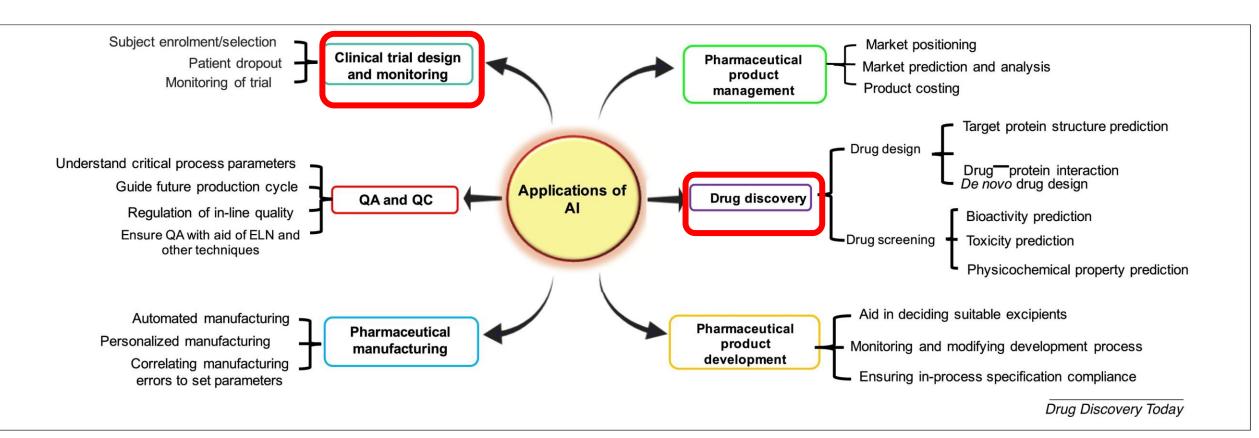
Timeline of Recent Generative AI Events

Feb	Feb	June	Nov	Feb
2018	2019	2020	2022	2023
GPT-1 release (117M parameters)	GPT-2 release (1.5B parameters)	GPT-3 release (175B parameters)	ChatGPT Released	ChatGPT Plus Subscription Service Released

2023 2023 2023 2023 2023 **OpenAl suffers** GPT-4 GPT-4 Anthropic Microsoft data breach launched Released passes bar announces (patched/ (1.76T Claude exam (90th Copilot announced (available parameters) percentile) 3/24) 11/1)

Mar 21, 2023	Mar 23, 2023	Mar 31, 2023	May 15, 2023	May 23, 2023
Google launched Bard	ChatGPT plugin support made available	Italy banned ChatGPT (restored 4/28)	OpenAl launches ChatGPT iOS app	Microsoft announces Bing use of ChatGPT
June 2,	June 25,	July 7,	July 13,	Sept 25,

https://ediscoverytoday.com /2023/10/17/a-timeline-ofrecent-generative-ai-eventsartificial-intelligence-trends/


PHealth

Timeline AI in Healthcare

- MYCIN: Early 1970s- Stanford University
 - Al-driven "backward chaining" expert system
 - Could help identify bacteria causing severe infections
 - Issues affecting uptake of MYCIN:
 - Liability
 - Cost-effectiveness questionable
 - Integration with existing workflow
 - Rapid pace of new antibiotic developments
- DXplain: 1986- University of Massachusetts
 - Input symptoms to generate Differential Diagnoses
- Watson: 2007- IBM
 - Open-domain "question-answer" system
 - In 2017, Watson successfully identified new RNA-binding proteins altered in ALS
 - 2020: IBM AI-driven computing systems facilitated Covid-19 mitigation & response

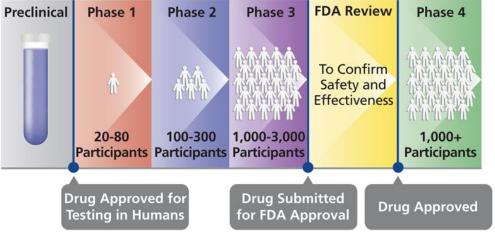
Application of AI in Pharmaceutical Industry

Drug discovery to pharmaceutical product management: From Bench to Bedside

Pharmacology-Al

- What is Pharmacology-AI?
 - Machine Learning analysis of "Big Data"
 - Objective: To identify genomic or medical features that drive a drug response
 - Outcome: Identify sub-groups of patients most likely to respond to a drug
- Medical providers: assists in finding "right drug for right patient"
- Pharma: supports decision-making process for existing drugs and expedites clinical trials
- Hospitals: helps prevent medical errors and reduce hospital readmissions
- Healthcare information system: helps workflow optimization and efficiency and reduces cost from duplicate or unnecessary procedures

Research Evidence: AI-Assisted Prescribing


- 2023: Clinical decision-making for de-prescribing benzodiazepines
 - Healthcare providers compared with AI chatbot, ChatGPT-4
 - Overall agreement 75-91%
 - Al-based Clinical Support Tools can be valuable
 - Decreasing HCP burnout
 - Enhancing HCP quality of care
- 2023: Comparing evaluation of depression and recommended treatment between ChatGPT-3.5 & 4 and primary care physicians
 - Eight case studies hypothetical patients with symptoms of depression
 - ChatGPT-4 responses compared with norms of 1249 primary care MDs
 - ChatGPT consistently recommended referral for psychotherapy; physicians most often recommended pharmacological treatment +/- referral for psychotherapy
 - Al systems has potential to enhance decision-making in primary care

AI-Derived Drugs in Clinical Trials

- Phase 2/3 drugs
 - Compound REC-2282: Recursion Pharmaceuticals
 - First-in-class, oral, CNS-penetrating small molecule
 - Indication: Neurofibromatosis Type 2 pts with progressive sporadic meningiomas driven by mutations in the NF2 gene
 - Other indications: Cerebral cavernous malformation, Familial adenomatous polyposis, C-diff infection
- Phase 2 drugs
 - Compound BEN-2293: BenevolentAI: Atopic dermatitis
 - Compound INS081_055: Insilico Medicine: Idiopathic pulmonary fibrosis
 - Compound NDI-010976/GS-0976: Nimbus Therapeutics: Nonalcoholic steatohepatitis
 - Compound REC-994: Recursion Pharmaceuticals: Cerebral cavernous malformation
 - Compound OPL-0310: Valo Health: Post-MI LVD; Acute kidney injury
 - Compound OPL-0401: Valo Health: Diabetic retinopathy; Diabetic complications

Q Health

Clinical Trials

Benefits, Risks, and Ethical Concerns

- Benefits:
 - Facilitate personalized medicine
 - Increased collaboration
 - Improved diagnostic accuracy
 - Clinical Decision Support System (CDSS)
 - Improve management chronic disease
 - Optimized dosing narrow-therapeutic-window drugs
 - Perform real-time evaluations of drug-efficacy
 - Detection of potentially inappropriate medications (PIMs)
 - Patient education and medication adherence
 - Optimize patient health monitoring using wearable devices

14

Benefits, Risks, and Ethical Concerns

• Risks:

- Data privacy and security
- Patient consent
- Bias in data collection used to "train" AI models
- "Overfitting"
- Lack of empirical evidence proving efficacy

Benefits, Risks, and Ethical Concerns

- Ethical Concerns:
 - Data privacy and security
 - Accountability: Poor decisions have serious consequences!
 - Who is responsible? The developer or the clinician?
 - Bias and discrimination
 - May lead to unequal treatment or inaccurate diagnosis for certain groups
 - Social concern for job security
 - Impact on clinician-patient relationship
 - Al must be a support tool rather than a replacement for human judgment
 - Human element in healthcare: Empathy, complex reasoning, understanding of individual patient needs

APP Pharmacology Education and Al

- 2024: Multi-national, cross-sectional study
 - Pharmacology students and faculty members' knowledge, attitudes, and practices regarding AI technology
 - 92.6% had heard of AI
 - 39.5% had a good understanding of AI concepts
 - 18% reported having received education/training on AI technology
 - AI knowledge higher among students than faculty
- Equipping students to navigate AI-driven pharmacologic options
- Quality Improvement focus in APP-DNP education: AI-based possibilities
- APP students must understand ethics and responsible use of AI in healthcare decision-making

- Al is becoming integrated into various facets of the pharmaceutical sector
 - Drug target identification
 - Screening of large databases to identify potential drug candidates
 - Drug "repurposing" to identify new therapeutic uses
 - Generating new molecules based on specific requirements
 - Toxicity prediction
 - Personalized medicine
- Successful application depends on:
 - High-quality data
 - Addressing ethical concerns
 - Recognizing limitations of AI-based approaches

References

Abdel, Aziz, M.H., Rowe, C., Southwood, R., Nogid, A., Berman, S., Gustafson, K. (2023). A scoping review of artificial intelligence within pharmacy education. *American Journal of Pharmaceutical Education*, *88*(1), 100615. <u>https://doi.org/10.1016/j.ajpe.2023.100615</u>

Arnold, C. (2023). Inside the nascent industry of AI-designed drugs. *Nature Medicine*, 29(6): 1292-1295. <u>https://doi:10.1038/s41591-023-02361-0</u>

Bekbolatova, M., Mayer, J., Ong, C.W., Toma, M. (2024) Transformative potential of AI in healthcare: Definitions, applications, and navigating the ethical landscape and public perspectives. *Healthcare*, *12*(125). <u>https://doi.org/10.3390/healthcare12020125</u>

Buzancic, I., Delec, D., Drzaic, M., Kummer, I., Brkic, J., Fialova, D., Hadziabdic, M.O. (2023). Clinical decision-making in benzodiazepine deprescribing by healthcare providers vs. AI-assisted approach. *British Pharmacological Society, 90*, pp 662-674. <u>https://doi.org/10.1111/bcp.15963</u>

Chalassani, S. H., Syed, J., Ramesh, M., Patil, V., Pramod Kumar, T.M. (2023). Artificial intelligence in the field of pharmacy practice: A literature review. *Exploratory Research in Clinical and Social Pharmacy, 12:* 100346. <u>https://doi.org/10.1016%2Fj.rcsop.2023.100346</u>

Hasan, H.E., Jaber, D., Al Tabbah, S., Lawand, N., Habib, H.A., Farahat, N.M. (2024). Knowledge, attitude and practice among pharmacy students and faculty members towards artificial intelligence in pharmacy practice: A multinational cross-sectional study. *PLoS One, 19*(3):e0296884. <u>https://doi.org/10.1371/journal.pone.0296884</u>

Kaul, V., Enslin, S., Gross, S.A. (2020). History of artificial intelligence in medicine. *Gastrointestinal Endoscopy Journal, 92*(4): 807-812. <u>https://doi.org/10.1016/j.gie.2020.06.040</u> Epub 2020 Jun 18. PMID: 32565184

Levkovich, I., Elyoseph, Z. (2023). Identifying depression and its determinants upon initiating treatment: ChatGPT versus primary care physicians. *Family Medicine and Community Health*, *11*(4): e002391. <u>https://doi.org/10.1136/fmch-2023-002391</u>

Okenyi, E., Walker, L. (2024). Advantages and challenges of AI in enhancing healthcare equity. *Prescriber, 35*(1), pp 4-24. <u>https://wchh.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/psb.2108</u>

Paul, D. Sanap, G., Shenoy, S., Kalyane, D., Kalia, K., Tekade, R.K. (2021). Artificial intelligence in drug discovery and development. *Drug Discovery Today, 26*(1). <u>https://doi.org/10.1016/j.drudis.2020.10.010</u>

Pillai, S.V., Kumar, R.S. (2021). The role of data-driven artificial intelligence on COVID-19 disease management in public sphere: A review. *Decision*, *48*(4), pp.375-389. <u>https://doi.org/10.1007%2Fs40622-021-00289-3</u>

Ponushis, A. (2023). AI: Friend or foe? American Association of Colleges of Pharmacy, News & Media. https://www.aacp.org/article/ai-friend-or-foe

References

Pun, F.W., Ozerov, I. V., Zhavoronkov, A. (2023). AI-powered therapeutic target discovery. *Trends in Pharmacological Sciences*,44(9). <u>https://doi.org/10.1016/j.tips.2023.06.010</u>

Raymond, L.M, Castonguay, A., Doyon, O., Paré, G. (2022). Nurse practitioners' involvement and experience with AI-based health technologies: A systematic review. *Applied Nursing Research, 66*:151604. <u>https://doi.org/10.1016/j.apnr.2022.151604</u>

Raza, M.A., Aziz, S., Noreen, M., Saeed, A., Anjum, I., Ahmed, M., Raza, S.M. (2022). Artificial intelligence (AI) in pharmacy: An overview of innovations. *Innovations in Pharmacy*, 13(2). <u>https://doi.org/10.24926%2Fiip.v13i2.4839</u>

Reprocell (2023, May 25). Frequently asked questions about pharmacology-AI. Reprocell. <u>https://www.reprocell.com/pharmacology-ai/faq</u>

Ryan, D.K., Maclean, R.H., Balston, A., Scourfield, A., Shah, A.D., Ross, J. (2023). Artificial intelligence and machine learning for clinical pharmacology. *British Pharmacological Society*, pp. 1-11. <u>https://doi-org.webproxy2.ouhsc.edu/10.1111/bcp.15930</u>

Turing, A.M. (1950). Computing machinery and intelligence. *Mind, LIX*(236), pp 433-460. <u>https://doi.org/10.1093/mind/LIX.236.433</u>

Van der Lee, M., Swen, J.J. (2023). Artificial intelligence in pharmacology research and practice. *Clinical and Translational Science*, *16*(1), pp 31-36. <u>https://doi.org/10.1111/cts.13431</u>

Questions?

Contact Information:

